Both the Extracellular Leucine-Rich Repeat Domain and the Kinase Activity of FLS2 Are Required for Flagellin Binding and Signaling in Arabidopsis
نویسندگان
چکیده
In Arabidopsis, activation of defense responses by flagellin is triggered by the specific recognition of the most conserved domain of flagellin, represented by the peptide flg22, in a process involving the FLS2 gene, which encodes a leucine-rich repeat serine/threonine protein kinase. We show here that the two fls2 mutant alleles, fls2-24 and fls2-17 , which were shown previously to confer insensitivity to flg22, also cause impaired flagellin binding. These features are rescued when a functional FLS2 gene is expressed as a transgene in each of the fls2 mutant plants, indicating that FLS2 is necessary for flagellin binding. The point mutation of the fls2-17 allele lies in the kinase domain. A kinase carrying this missense mutation lacked autophosphorylation activity when expressed in Escherichia coli . This indicates that kinase activity is required for binding and probably affects the stability of the flagellin receptor complex. We further show that overexpression of the kinase-associated protein phosphatase (KAPP) in Arabidopsis results in plants that are insensitive to flagellin treatment, and we show reduced flg22 binding in these plants. Furthermore, using the yeast two-hybrid system, we show physical interaction of KAPP with the kinase domain of FLS2. These results suggest that KAPP functions as a negative regulator of the FLS2 signal transduction pathway and that the phosphorylation of FLS2 is necessary for proper binding and signaling of the flagellin receptor complex.
منابع مشابه
Both the extracellular leucine-rich repeat domain and the kinase activity of FSL2 are required for flagellin binding and signaling in Arabidopsis.
In Arabidopsis, activation of defense responses by flagellin is triggered by the specific recognition of the most conserved domain of flagellin, represented by the peptide flg22, in a process involving the FLS2 gene, which encodes a leucine-rich repeat serine/threonine protein kinase. We show here that the two fls2 mutant alleles, fls2-24 and fls2-17, which were shown previously to confer insen...
متن کاملProbing the Arabidopsis Flagellin Receptor: FLS2-FLS2 Association and the Contributions of Specific Domains to Signaling Function W OA
FLAGELLIN SENSING2 (FLS2) is a transmembrane receptor kinase that activates antimicrobial defense responses upon binding of bacterial flagellin or the flagellin-derived peptide flg22. We find that some Arabidopsis thaliana FLS2 is present in FLS2-FLS2 complexes before and after plant exposure to flg22. flg22 binding capability is not required for FLS2-FLS2 association. Cys pairs flank the extra...
متن کاملProbing the Arabidopsis flagellin receptor: FLS2-FLS2 association and the contributions of specific domains to signaling function.
Flagellin sensing2 (FLS2) is a transmembrane receptor kinase that activates antimicrobial defense responses upon binding of bacterial flagellin or the flagellin-derived peptide flg22. We find that some Arabidopsis thaliana FLS2 is present in FLS2-FLS2 complexes before and after plant exposure to flg22. flg22 binding capability is not required for FLS2-FLS2 association. Cys pairs flank the extra...
متن کاملIdentification and Mutational Analysis of Arabidopsis FLS2 Leucine-Rich Repeat Domain Residues That Contribute to Flagellin Perception W
Mutational, phylogenetic, and structural modeling approaches were combined to develop a general method to study leucine-rich repeat (LRR) domains and were used to identify residues within the Arabidopsis thaliana FLAGELLIN-SENSING2 (FLS2) LRR that contribute to flagellin perception. FLS2 is a transmembrane receptor kinase that binds bacterial flagellin or a flagellin-based flg22 peptide through...
متن کاملMutations in FLS2 Ser-938 Dissect Signaling Activation in FLS2-Mediated Arabidopsis Immunity
Flagellin-sensing 2 (FLS2) is a leucine-rich repeat/transmembrane domain/protein kinase (LRR-RLK) that is the plant receptor for bacterial flagellin or the flagellin-derived flg22 peptide. Previous work has shown that after flg22 binding, FLS2 releases BIK1 kinase and homologs and associates with BAK1 kinase, and that FLS2 kinase activity is critical for FLS2 function. However, the detailed mec...
متن کامل